
1

An Introduction to
Programming in Haskell

Mark P Jones

Portland State University

2

Haskell Resources:

3

Haskell Resources:

! " The focal point for information about
Haskell programming, implementations,
libraries, etc… is www.haskell.org

! " I’ll be using:
!" the Hugs interpreter (haskell.org/hugs)

!" the Glasgow Haskell compiler, GHC, and
interpreter, GHCi (haskell.org/ghc)

! " Online tutorials/references:
!" learnyouahaskell.com

!" book.realworldhaskell.org
4

The Language Report:

The definition of the Haskell 98
standard

Lots of technical details … not a
great read!

Available in hard copy from
Cambridge University Press

Or in pdf/html/etc… from
www.haskell.org/definition

5

Textbooks:

! " Introduction to Functional Programming using
Haskell (2nd edition), Richard Bird

! " The Haskell School of Expression, Paul Hudak

! "Haskell: The Craft of Functional Programming
(2nd edition), Simon Thompson

! " Programming in Haskell, Graham Hutton
6

What is Functional
Programming?

7

What is Functional Programming?

! " Functional programming is a style of
programming that emphasizes the
evaluation of expressions, rather than
execution of commands

! " Expressions are formed by using functions
to combine basic values

! " A functional language is a language that
supports and encourages programming in a
functional style

8

Functions:

In a pure functional language:

! " The result of a function depends only on
the values of its inputs:
!" Like functions in mathematics

!" No global variables / side-effects

! " Functions are first-class values:
!" They can be stored in data structures

!" They can be passed as arguments or returned
as results of other functions

9

Example:

! "Write a program to add up the
numbers from 1 to 10

10

In C, C++, Java, C#, … :

int tot = 0;

for (int i=1; i<10; i++)

 tot = tot + i;

update

update

initialization

initialization

iteration

implicit result returned in the variable tot

11

In ML:

let fun sum i tot

 = if i>10

 then tot

 else sum (i+1) (tot+i)

in sum 1 0

end
(tail) recursion

accumulating parameter

initialization

result is the value of this expression

12

In Haskell:

sum [1..10]

the list of numbers to add combining
function

result is the value of this expression

13

Raising the Level of Abstraction:

 "If you want to reduce [design time], you
have to stop thinking about something you

used to have to think about.” (Joe Stoy,
recently quoted on the Haskell mailing list)

! " Example: memory allocation

! " Example: data representation

! " Example: order of evaluation

! " Example: (restrictive) type annotations

14

Computing by Calculating:

! " Calculators are a great tool
for manipulating numbers

! " Buttons for:
!" entering digits

!" combining values

!" using stored values

! " Not so good for manipulating
large quantities of data

! " Not good for manipulating
other types of data

42.0 !

15

Computing by Calculating:

! " What if we could “calculate”
with other types of value?

! " Buttons for:
!" entering pixels

!" combining pictures

!" using stored pictures

! " I wouldn’t want to calculate a
whole picture this way!

! " I probably want to deal with
several different types of data at
the same time 16

Computing by Calculating:
! " Spreadsheets are

better suited for
dealing with larger

quantities of data

! " Values can be
named (but not operations)

! " Calculations (i.e., programs) are recorded so that
they can be repeated, inspected, modified

! " Good if data fits an “array”

! " Not so good for multiple types of data

17

Functional Languages:

! "Multiple types of data

!" Primitive types, lists, functions, …

!" Flexible user defined types …

! "Operations for combining values to build new
values (combinators)

! " Ability to name values and operations
(abstraction)

! " Scale to arbitrary size and shape data

! " “Algebra of programming” supports reasoning

18

Getting Started with
Haskell

19

Starting Hugs:
user$ hugs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Bugs: http://hackage.haskell.org/trac/hugs

|| || Version: September 2006 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Hugs>
The most important commands:

•" :q quit

•" :l file load file

•" :e file edit file

•" Expr evaluate expression
20

The read-eval-print loop:

1." Enter expression at the prompt

2." Hit return

3.!The expression is read, checked, and
evaluated

4.!Result is displayed

5." Repeat at Step 1

21

Simple Expressions:

Expressions can be constructed using:

! " The usual arithmetic operations:

1 + 2 * 3

! " Comparisons:

 1 == 2 'a' < 'z'

! " Boolean operators:

True && False not False

! " Built-in primitives:

 odd 2 sin 0.5

! " Parentheses:

odd (2 + 1) (1 + 2) * 3

! " Etc … 22

Expressions Have Types:

! "The type of an expression tells you what
kind of value you will get when you
evaluate that expression:

! "In Haskell, read “::” as “has type”

! "Examples:
!" 1 :: Int, 'a' :: Char, True :: Bool, 1.2 :: Float, …

! "You can even ask Hugs for the type of an
expression: :t expr

23

Type Errors:
Hugs> 'a' && True

ERROR - Type error in application

*** Expression : 'a' && True

*** Term : 'a'

*** Type : Char

*** Does not match : Bool

Hugs> odd 1 + 2

ERROR - Cannot infer instance

*** Instance : Num Bool

*** Expression : odd 1 + 2

Hugs>

24

Pairs:

! "A pair packages two values into one
 (1, 2) ('a', 'z') (True, False)

! "Components can have different types
 (1, 'z') ('a', False) (True, 2)

! "The type of a pair whose first component is
of type A and second component is of type
B is written (A,B)

! "What are the types of the pairs above?

25

Operating on Pairs:

! " There are built-in functions for
extracting the first and second
component of a pair:

fst (True, 2) = True

snd (0, 7) = 7

26

Lists:

! "Lists can be used to store zero or more
elements, in sequence, in a single value:

[] [1, 2, 3] ['a', 'z'] [True, True, False]

! "All of the elements in a list must have the
same type

! "The type of a list whose elements are of
type A is written as [A]

! "What are the types of the lists above?

27

Operating on Lists:

! " There are built-in functions for extracting
the head and the tail components of a list:

!" head [1,2,3,4] = 1

!" tail [1,2,3,4] = [2,3,4]

! " Conversely, we can build a list from a given
head and tail using the “cons” operator:

!" 1 : [2, 3, 4] = [1, 2, 3, 4]

28

More Operations on Lists:

! "Finding the length of a list:
length [1,2,3,4,5] = 5

! "Finding the sum of a list:
sum [1,2,3,4,5] = 15

! "Finding the product of a list:
product [1,2,3,4,5] = 120

! "Applying a function to the elements of a
list:
map odd [1,2,3,4] = [True, False, True, False]

29

Continued …

! "Selecting an element (by position):
[1,2,3,4,5] !! 3 = 4

! "Taking an initial prefix (by number):
take 3 [1,2,3,4,5] = [1,2,3]

! "Taking an initial prefix (by property):
takeWhile odd [1,2,3,4,5] = [1]

! "Checking for an empty list:
null [1,2,3,4,5] = False

30

More ways to Construct Lists:

! "Concatenation:
[1,2,3] ++ [4,5] = [1,2,3,4,5]

! "Arithmetic sequences:
[1..10] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1,3..10] = [1, 3, 5, 7, 9]

! "Comprehensions:
[2 * x | x <- [1,2,3,4,5]] = [2, 4, 6, 8, 10]

[y | y <- [1,2,3,4], odd y] = [1, 3]

31

Strings are Lists:

! "A String is just a list of Characters

['w', 'o', 'w', '!'] = "wow!"

['a'..'j'] = "abcdefghij"

"hello, world" !! 7 = 'w'

length "abcdef" = 6

"hello, " ++ "world" = "hello, world"

take 3 "functional" = "fun"

32

Functions:

! "The type of a function that maps
values of type A to values of type B is
written A -> B

! "Examples:

!" odd :: Int -> Bool

!" fst :: (a, b) -> a (a,b are type variables)

!" length :: [a] -> Int

33

Operations on Functions:

! "Function Application. If f :: A -> B and x ::
A, then f x :: B

! "Notice that function application associates
more tightly than any infix operator:

 f x + y = (f x) + y

! "In types, arrows associate to the right:
 A -> B -> C = A -> (B -> C)

Example: take :: Int -> [a] -> [a]

 take 2 [1,2,3,4] = (take 2) [1,2,3,4]
34

Sections:

! "If ! is a binary op of type A -> B -> C,
then we can use “sections”:

!" (!) :: A -> B -> C

!" (expr !) :: B -> C (assuming expr::A)

!" (! expr) :: A -> C (assuming expr::B)

! "Examples:

!" (1+), (2*), (1/), (<10), …

35

Higher-order Functions:

! "map :: (a -> b) -> [a] -> [b]

!" map (1+) [1..5] = [2,3,4,5,6]

! "takeWhile :: (a -> Bool) -> [a] -> [a]

!" takeWhile (<5) [1..10] = [1,2,3,4]

! "(.) :: (a -> b) -> (c -> a) -> c -> b

!" (odd . (1+)) 2 = True

“composition” 36

Definitions:

! "So far, we’ve been focusing on expressions
that we might want to evaluate.

! "What if we wanted to:
!" Define a new constant (i.e., Give a name to the

result of an expression)?

!" Define a new function?

!" Define a new type?

! "Definitions are placed in files with a .hs
suffix that can be loaded into the interpreter

37

Simple Definitions:

Put the following text in a file “defs.hs”:

greet name = "hello " ++ name

square x = x * x

fact n = product [1..n]

38

Loading Defined Values:

Pass the filename as a command line argument to

Hugs, or use the :l command from inside Hugs:

Main> :l defs

Main> greet "everybody"

"hello everybody"

Main> square 12

144

Main> fact 32

263130836933693530167218012160000000

Main>

Using Libraries:

! "Many useful functions are provided as part
of the “Prelude”

! "Many more are provided by libraries that
must be imported before they can be used

! "Example:

import Char

nextChar c = chr (1 + ord c)

! "(The Char library also provides functions for
converting to upper/lower case, testing for
alphabetic or numeric chars, etc…)

39 40

Typeful Programming:

! "Types are an inescapable feature of
programming in Haskell
!" Programs, definitions, and expressions that do

not type check are not valid Haskell programs

!" Compilation of Haskell code depends on
information that is obtained by type checking

! "Haskell provides several predefined types:
!" Some built-in (functions, numeric types, …)

!" Some defined in the Prelude (Bool, lists, …)

! "What if you need a type that isn’t built-in?

41

Type Synonyms:

42

Type Synonym:

! "A type synonym (or type abbreviation) gives
a new name for an existing type.

! "Examples:
 type String = [Char]

 type Length = Float

 type Angle = Float

 type Radius = Length

 type Point = (Float, Float)

 type Set a = a -> Bool

43

Algebraic Datatypes:

44

In Haskell Notation:

data Bool = False | True
introduces:

!" A type, Bool

!" A constructor function, False :: Bool

!" A constructor function, True :: Bool

data List a = Nil | Cons a (List a)
introduces

!" A type, List t, for each type t

!" A constructor function, Nil :: List a

!" A constructor function, Cons :: a -> List a -> List a

45

More Enumerations:

data Rainbow = Red | Orange | Yellow
 | Green | Blue | Indigo | Violet

introduces:

!" A type, Rainbow

!" A constructor function, Red :: Rainbow

!" …

!" A constructor function, Violet :: Rainbow

46

More Recursive Types:

data Shape = Circle Radius
 | Rect Length Length
 | Transform Transform Shape

data Transform
 = Translate Point
 | Rotate Angle
 | Compose Transform Transform

introduces:

!" Two types, Shape and Transform

!" Circle :: Radius -> Shape

!" Rect :: Length -> Length -> Shape

!" Transform :: Transform -> Shape -> Shape

!" …

Using New Data Types:

! "Building values of these new types is
easy:

Nil :: List Rainbow

Cons Red Nil :: List Rainbow

Cons Blue (Cons Red Nil) :: List Rainbow

! "But how do we inspect them or take
them apart?

47 48

Pattern Matching:

! " In addition to introducing a new type and a
collection of constructor functions, each data
definition also adds the ability to pattern match
over values of the new type

! " Example:

 first :: (a, b) -> a

 first (x, y) = x

 wavelengths :: Rainbow -> (Length,Length)

 wavelengths Red = (620*nm, 750*nm)

 wavelengths Orange = (590*nm, 620*nm)

 …

 nm = 1e-9 :: Float

49

More Examples:

 head :: [a] -> a

 head [] = error “head of []”

 head (x:xs) = x

 length :: [a] -> Int

 length [] = 0

 length (x:xs) = 1 + length xs

 area :: Shape -> Float

 area (Circle r) = pi * r * r

 area (Rect w h) = w * h

 area (Transform t s) = area s

50

Pattern Matching & Substitution:

! "The result of a pattern match is either:
!" A failure

!" A success, accompanied by a substitution
that provides a value for each of the
values in the pattern

! "Examples:
!" [] does not match the pattern (x:xs)

!" [1,2,3] matches the pattern (x:xs) with
x=1 and xs=[2,3]

51

Patterns:

More formally, a pattern is either:

! " An identifier
!" Matches any value, binds result to the identifier

! " An underscore (a “wildcard”)
!" Matches any value, discards the result

! " A constructed pattern of the form C p1 … pn,
where C is a constructor of arity n and p1, … ,pn
are patterns of the appropriate type
!" Matches any value of the form C e1 … en, provided that

each of the ei values matches the corresponding pi
pattern.

52

Other Pattern Forms:

For completeness:

! " “Sugared” constructor patterns:
!" Tuple patterns (p1,p2)

!" Cons patterns (ph : pt)

!" List patterns [p1, p2, p3]

!" Strings, for example: "hi" = (‘h’ : ‘i’ : [])

! "Character and numeric Literals:
!" Can be considered as constructor patterns, but the

implementation uses equality (==) to test for matches

53

Function Definitions:

! "In general, a function definition is written as
a list of adjacent equations of the form:

 f p1 … pn = rhs

 where:
!" f is the name of the function that is being defined

!" p1, …, pn are patterns, and rhs is an expression

! "All equations in the definition of f must have
the same number of arguments (the “arity”
of f)

54

… continued:

! "Given a function definition with m
equations:

f p1,1 … pn,1 = rhs1

f p1,2 … pn,2 = rhs2

…

f p1,m … pn,m = rhsm

! "The value of f e1 … en is S rhsi, where i is
the smallest integer such that the
expressions ej match the patterns pj,i and S
is the corresponding substitution.

55

Example: filter

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : rest

 | otherwise = rest

 where rest = filter p xs

“where” clause guards

56

Example: Binary Search Trees

data Tree = Leaf | Fork Tree Int Tree

insert :: Int -> Tree -> Tree

insert n Leaf = Fork Leaf n Leaf

insert n (Fork l m r)
 | n <= m = Fork (insert n l) m r
 | otherwise = Fork l m (insert n r)

lookup :: Int -> Tree -> Bool

lookup n Leaf = False

lookup n (Fork l m r)

 | n < m = lookup n l

 | n > m = lookup n r

 | otherwise = True

57

Summary:

! "An appealing, high-level approach to
program construction in which
independent aspects of program
behavior are neatly separated

! " It is possible to program in a similar
compositional / calculational manner in
other languages …

! "… but it seems particularly natural in a
functional language like Haskell …

Assignment #1

! " Your goal is to write a function:

!" toInt :: String -> Int

! " To accomplish this, consider the following functions:

!" explode :: String -> [Char]

!" digitValue :: [Char] -> [Int]

!" reverse :: [Int] -> [Int]

!" pairedWithPowersOf10 :: [Int] -> [(Int,Int)]

!" pairwiseProduct :: [(Int,Int)] -> [Int]

!" sum :: [Int] -> Int

! " Write definitions for four of these functions (reverse and sum are built-
in), using pattern matching and recursion where necessary

! " Turn in an elegant program that communicates your solution well,
including appropriate tests for each part.

58

